Analysis and Control Software for Distributed Cooperative Systems

John T. Feddema, Rush Robinett, Dave Schoenwald, Fred Oppel, John Wagner, Eric Parker

Sandia National Laboratories

P.O. Box 5800, MS 1003

Albuquerque, NM 87185

505-844-0827

505-844-6161 FAX

jtfedde@sandia.gov

http://www.sandia.gov/isrc/sdr_program.html

This work supported by DARPA ITO.

Analysis and Control Software for Distributed Cooperative Systems

New Ideas

- Large-scale analysis and control of distributive cooperative systems using graph theory and variable structure control.
- Self-organizing communication networks.
- Distributed optimization formulation of tasking and control problems.
- Very large-scale system analysis using statistical and continuum mechanics.

Impact

- Force Multiplier Enables a single operator to control 100s to 1000s of distributed systems.
- Provably convergent control algorithms ensure safe operations.
- Distributed controls provides fault tolerance.
- Low communication bandwidth for covert operations.

Schedule

- 1 Graph Theory/VSC
- 2 Stat. Mechanics
- 3 Self-org. Comm.
- 4 Dist. Optimization
- 5 Cont. Mechanics

Hardware Demos

Presentation Outline

- Stability analysis.
- How analysis applies to real problems.
- Implementation in progress.
- Proposed future work.

Communication/Navigation Network

- Use state space models and graph theory to
 - Determine strongly connected subsystems.
 - Input/output reachable.
 - Structurally observable/controllable.
 - Connectively stable.
 - Evaluate reconfigurable mobile communication networks.

Stability Analysis of Large Scale Systems

- Computing controllability and observability is numerically difficult for large scale systems.
 Instead, we compute
 - Input Reachability => Structural Observability
 - Output Reachability => Structural Controllability
 - Vector Liapunov => Connective Stability

Large Scale Systems

State Space Model of N interconnected subsystems:

S:
$$A_i = f_i(t, x_i, u_i) + \widetilde{f}_i(t, x, u), \quad i \in \{1, ..., N\}$$

 $y_i = h_i(t, x_i) + \widetilde{h}_i(t, x)$

where

$$\widetilde{f}_{i}(t,x,u) = \widetilde{f}_{i}(t,\overline{a}_{i1}x_{1},\overline{a}_{i2}x_{2},...,\overline{a}_{iN}x_{N},\overline{b}_{i1}u_{1},\overline{b}_{i2}u_{2},...,\overline{b}_{iN}u_{N})$$

$$\widetilde{h}_{i}(t,x) = \widetilde{h}_{i}(t,\overline{c}_{i1}x_{1},\overline{c}_{i2}x_{2},...,\overline{c}_{iN}x_{N})$$

and $\overline{a}_{ij}, \overline{b}_{ij}, \overline{c}_{ij}$ are 1 or 0 (coupling or no coupling).

Control feedback is added to system such that

$$u_{i} = k_{i}(t, y_{i}) + \widetilde{k}_{i}(t, y), \qquad i \in \{1, ..., N\}$$
$$\widetilde{k}_{i}(t, y) = \widetilde{k}_{i}(t, \overline{k}_{i1}y_{1}, \overline{k}_{i2}y_{2}, ..., \overline{k}_{iN}y_{N})$$

Large Scale Systems

Interconnection Matrix is

$$E = \begin{bmatrix} \overline{A} & \overline{B} & 0 \\ 0 & 0 & \overline{K} \\ \overline{C} & 0 & 0 \end{bmatrix} \text{ where } \overline{A} = (\overline{a}_{ij}) \quad \overline{B} = (\overline{b}_{ij}) \quad \overline{C} = (\overline{c}_{ij}) \quad \overline{K} = (\overline{k}_{ij})$$
Reachability Matrix is $R = E \vee E^2 \vee ... \vee E^s = \begin{bmatrix} F & G & 0 \\ 0 & 0 & 0 \\ H & \theta & 0 \end{bmatrix} \text{ if } \overline{K} = 0$

- Input reachable iff G has nonzero rows.
- Output reachable iff H has nonzero rows.
- Structurally controllable if input reachable and no dilations (independent control all state variables).
- Structurally observable if output reachable and no dilations.

Large Scale System Stability

Closed loop dynamics

S:
$$\mathbf{x} = g_i(t, x_i) + \widetilde{g}_i(t, x), \quad i \in \{1, ..., N\}$$

 $\widetilde{g}_i(t, x) = \widetilde{g}_i(t, \overline{e}_{i1}x_1, \overline{e}_{i2}x_2, ..., \overline{e}_{iN}x_N)$

• Connectively stable if $W = (w_{ij})$ where $w_{ij} = \begin{cases} 1 - \overline{e}_{ii} \kappa_i \xi_{ii}, & i = j \\ -\overline{e}_{ij} \kappa_i \xi_{ij}, & i \neq j \end{cases}$ is an M-matrix (all leading principle minors must be positive). Variables $\kappa_i > 0$, $\xi_{ij} \ge 0$ must satisfy

$$|v_{i}(t,x')-v_{i}(t,x''_{i})| \leq \kappa_{i} ||x'_{i}-x''_{i}||, \quad \forall t \in T, \quad \forall x'_{i},x''_{i} \in \Re^{n_{i}}$$

$$||\widetilde{g}_{i}(t,x)|| \leq \sum_{j=1}^{N} \overline{e}_{ij} \xi_{ij} \phi_{j} (|x_{j}||) \quad \forall (t,x) \in T \times \Re^{n}$$

$$\mathscr{L}(t,x_i) \leq -\phi_j \left(x_j \right) \quad \forall (t,x_i) \in T \times \mathfrak{R}^{n_i}$$

Large Scale System Stability

Closed loop dynamics for linear systems

S:
$$A_i = A_i x_i + \sum_{j=1}^{N} e_{ij} A_{ij} x_j$$
, $i \in \{1,...,N\}$
 $0 \le e_{ij} \le 1$

• Connectively stable if $W = (w_{ij})$ is an M-matrix (all leading principle minors must be positive) where

$$w_{ij} = \begin{cases} \frac{\lambda_m(G_i)}{2\lambda_M(H_i)} - \overline{e}_{ii}\lambda_M^{1/2}(A_{ii}^T A_{ii}) & i = j\\ -\overline{e}_{ij}\lambda_M^{1/2}(A_{ij}^T A_{ij}) & i \neq j \end{cases}$$

Note: $0 \le e_{ij} \le 1$ implies stable even if communication is down or degraded.

Analysis of Example Problems

- Perimeter Surveillance
- Self-Healing Minefield
- Distributed Communication Navigation Network

One-Dimensional Stability Problem

Problem 1: Spread out uniformly

Problem 2: Spread out in specified pattern

Two Dynamic Models:

- 1. Localization sample period = Communication sample period
- 2. Localization sample period << Communication sample period

Perimeter Adjustment is 1D Problem

Self-Healing Minefield is 1D Problem

Model 1 for Two Strongly Connected Vehicles

T is the sample period of the position feedback loop. Assumes that position updates are the same as communication updates.

Stability using Vector Liapunov

Difference Equations

$$y_i(k+1) = A_i y_i(k) + A_{i(i-1)} y_{i-1}(k) + A_{i(i+1)} y_{i+1}(k)$$

for $i = 2,..., n-1$

System is connectively globally asymptotically stable if matrix below is an M-matrix (leading principle minors are positive).

$$W = \begin{bmatrix} \xi_1 & -\varepsilon \xi_{12} & 0 & 0 \\ -\varepsilon \xi_{21} & \xi_2 & -\varepsilon \xi_{23} & 0 \\ 0 & -\varepsilon \xi_{32} & \xi_3 & O \\ 0 & 0 & O & O \end{bmatrix}$$

where

$$\xi_{i} = \frac{1}{\lambda_{M}(H_{i}^{*}) + \lambda_{M}^{1/2}(H_{i}^{*})\lambda_{M}^{1/2}(H_{i}^{*} - I)}$$
$$\xi_{ij} = \lambda_{M}^{1/2}(A_{ij}^{T}A_{ij})$$
$$A_{i}^{T}H_{i}^{*}A_{i} - H_{i}^{*} = -I \qquad 0 \le \varepsilon \le 1$$

Model 1 Stable Regions for Multiple Vehicles

Model 1 Conclusion

- Stability depends on vehicle responsiveness K_p , communication sampling period T, and interaction gain γ .
- System goes unstable if communication sampling period is too long and/or vehicle responsiveness is too fast.
- Interaction gains can be used to contract or spread out vehicles.
- The stability region reaches a limit for large numbers of vehicles.

Two-Dimensional Problem: Communication/Navigation Network

Going into an unknown environment, and spreading out with uniform density. Want to maintain communication between adjacent vehicles.

2D Localization Algorithms Investigated

- Law of Cosines
- Steepest Descent
- Conjugate Gradient
- Least Squares
- Kaczmarz Distributed Algorithm

Law of Cosines

$$d_{23}^2 = d_{12}^2 + d_{13}^2 - 2d_{12}d_{13}\cos\theta_{213}$$

Can show that

$$^{1}x_{3} = \frac{d_{12}^{2} + d_{13}^{2} - d_{23}^{2}}{2d_{12}}$$
 $^{1}y_{3} = \pm \sqrt{d_{13}^{2} - (^{1}x_{3})^{2}}$

Similarly

$${}^{1}x_{4} = \frac{d_{12}^{2} + d_{14}^{2} - d_{24}^{2}}{2d_{12}} \qquad {}^{1}y_{4} = \pm \sqrt{d_{14}^{2} - \left(x_{4}\right)^{2}}$$

Select sign which minimizes

$$\left| d_{34}^2 - \left[\left({}^{1}x_4 - {}^{1}x_3 \right)^{9} + \left({}^{1}y_4 - {}^{1}y_3 \right)^{9} \right] \right|$$

Steepest Descent Method

$$\min_{\bar{x}} f(\bar{x}) \quad \text{where} \quad f(\bar{x}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left(d_{ij}^2 - (x_i - x_j)^2 - (y_i - y_j)^2 \right)^2$$

Iterative Solution:

$$\overline{x}(k+1) = \overline{x}(k) - \alpha \nabla f(\overline{x}(k))$$

Do not need to know all d_{ii}!!

$$\bar{x} = \begin{bmatrix} x_1 \\ M \\ x_n \\ y_1 \\ M \\ y_n \end{bmatrix} \in \Re^{2n} \quad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ M \\ \frac{\partial f}{\partial x_n} \\ \frac{\partial f}{\partial y_1} \\ M \\ \frac{\partial f}{\partial y_n} \\ \frac{\partial f}{$$

Minefield Algorithm

Swarming Behaviors Described as an Optimization Problem

Centralized: $\min_{\bar{x}} f(\bar{x})$

or

where
$$f(\bar{x}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (d_{ij}^2 - (x_i - x_j)^2 - (y_i - y_j)^2)$$

Or Distributed:
$$\min_{\overline{x}} f_i(\overline{x}) \ \forall i$$
 where $f_i(\overline{x}) = \sum_{j \in NN} \left(d_{ij}^2 - \left(x_i - x_j \right)^2 - \left(y_i - y_j \right)^2 \right)$

Dispersion Simulations

Dispersion using position of 3 nearest neighbors.

Dispersion in hallway.

Swarming Behaviors Described as an Optimization Problem

Iterative Solution: $\bar{x}_i(k+1) = \bar{x}_i(k) - \alpha \nabla f_i(\bar{x}(k))$

$$\overline{x}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} \in \Re^{2} \quad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_{i}} \\ \frac{\partial f}{\partial y_{i}} \end{bmatrix} \in \Re^{2} \quad \frac{\partial f_{i}(\overline{x})}{\partial x_{i}} = -4 \sum_{j \in NN} \left[d_{ij}^{2} - (x_{i} - x_{j})^{2} - (y_{i} - y_{j})^{2} \right] (x_{i} - x_{j}) \\
\frac{\partial f_{i}(\overline{x})}{\partial y_{i}} = -4 \sum_{j \in NN} \left[d_{ij}^{2} - (x_{i} - x_{j})^{2} - (y_{i} - y_{j})^{2} \right] (y_{i} - y_{j})$$

Meta-Level Behaviors such as:

- Dispersion
- Following
- Clustering
 - Orbiting

can be mathematically described using this optimization approach with different values of d_{ij} .

Most importantly, we can prove stability and convergence of these solutions!!!

Gradient-Based Dispersion

Future Work

- Demonstrate communication/navigation network with 20 Netbot vehicles.
- Add surveillance cameras to Netbots.
- Extend to a heterogeneous indoor/outdoor communication/navigation network consisting of RATLERs, Netbots, and Millibots.
- Continue statistical and quantum mechanics analysis for 1000s.

Heterogeneous Team

